Class ThinRfFieldMap

java.lang.Object
xal.model.elem.Element
xal.model.elem.ThinElement
xal.extension.jels.model.elem.ThinRfFieldMap
All Implemented Interfaces:
IRfCavityCell, IRfGap, IComponent, IElement

public class ThinRfFieldMap extends ThinElement implements IRfGap, IRfCavityCell
Thin element version for RF field map implementation. This class allows superposition to other fieldmaps, but has the overhead of creating an element for every point in the fieldmap.

You should use ThickRfFieldMap for big non-superposed fieldmaps for high performance.

Author:
Juan F. Esteban Müller <JuanF.EstebanMuller@esss.se>
  • Constructor Details

    • ThinRfFieldMap

      public ThinRfFieldMap()
    • ThinRfFieldMap

      public ThinRfFieldMap(String strId)
  • Method Details

    • getCellLength

      public double getCellLength()
    • setCellLength

      public void setCellLength(double cellLength)
    • getDeltaPhi

      public double getDeltaPhi()
    • setDeltaPhi

      public void setDeltaPhi(double deltaPhi)
    • initializeFrom

      public void initializeFrom(LatticeElement element)
      Description copied from class: Element
      Conversion method to be provided by the user
      Specified by:
      initializeFrom in interface IComponent
      Overrides:
      initializeFrom in class Element
      Parameters:
      element - the SMF node to convert
    • transferMap

      public PhaseMap transferMap(IProbe probe) throws ModelException
      Method calculates transfer matrix for the field map for a given data point in the field map.Drift spaces are calculated separately.
      Specified by:
      transferMap in class ThinElement
      Parameters:
      probe -
      Returns:
      Throws:
      ModelException
    • longitudinalPhaseAdvance

      protected double longitudinalPhaseAdvance(IProbe probe)
      Description copied from class: ThinElement

      Again, this is a kluge. We return zero since the notion of frequency is not defined for every element (perhaps if this element is the child of an RF cavity). For those elements that do create a phase advance they need to override this method.

      There is some legitimacy in returning zero since a thin element generally has no phase advance. That is, there is no propagation therefore no elapsed time and no phase advance. Only if there is energy gain must there be a corresponding conjugate phase advance.

      Overrides:
      longitudinalPhaseAdvance in class ThinElement
      Parameters:
      probe - probe experiencing a phase advance through this element
      Returns:
      the change in phase while going through the element
    • elapsedTime

      protected double elapsedTime(IProbe probe)
      Description copied from class: ThinElement
      Returns the time taken for the probe to propagate through element.
      Specified by:
      elapsedTime in class ThinElement
      Parameters:
      probe - propagating probe
      Returns:
      elapsed time through element Units: seconds
    • energyGain

      protected double energyGain(IProbe probe)
      Calculate the energy gain for this element on the supplied probe.

      This implementation assumes that this method is always called after the transferMap method. This is true for the EnvelopeTracker, but might differ for other algorithms.

      Specified by:
      energyGain in class ThinElement
      Returns:
      this element's energy gain
    • setETL

      public void setETL(double dblETL)
      Description copied from interface: IRfGap
      Set the ETL product of the RF gap where E is the longitudinal electric field of the gap, T is the transit time factor of the gap, L is the length of the gap. The maximum energy gain from the gap is given by qETL where q is the charge (in Coulombs) of the species particle.
      Specified by:
      setETL in interface IRfGap
      Parameters:
      dblETL - ETL product of gap (in volts).
    • setE0

      public void setE0(double cavAmp)
      Description copied from interface: IRfGap
      Set the on accelerating field. This method should be called by the RF cavity containing this gap and should use the amplitude factor.
      Specified by:
      setE0 in interface IRfGap
      Parameters:
      cavAmp - - the on axis field (V/m)
    • setPhase

      public void setPhase(double cavPhase)
      Description copied from interface: IRfGap
      Set the phase delay of the RF in gap with respect to the synchronous particle. The actual energy gain from the gap is given by qETLcos(dblPhi) where dbkPhi is the phase delay. This method should be called by the RF cavity containing this gap and should use the phase factor.
      Specified by:
      setPhase in interface IRfGap
      Parameters:
      cavPhase - phase delay of the RF w.r.t. synchronous particle (in radians).
    • setFrequency

      public void setFrequency(double dblFreq)
      Description copied from interface: IRfGap
      Set the operating frequency of the RF gap.
      Specified by:
      setFrequency in interface IRfGap
      Parameters:
      dblFreq - frequency of RF gap (in Hertz)
    • getETL

      public double getETL()
      Description copied from interface: IRfGap
      Return the ETL product of the gap, where E is the longitudinal electric field, T is the transit time factor, and L is the gap length.
      Specified by:
      getETL in interface IRfGap
      Returns:
      the ETL product of the gap (in volts).
    • getPhase

      public double getPhase()
      Description copied from interface: IRfGap
      Return the RF phase delay of the gap with respect to the synchronous particle.
      Specified by:
      getPhase in interface IRfGap
      Returns:
      phase delay w.r.t. synchronous particle (in radians).
    • getFrequency

      public double getFrequency()
      Description copied from interface: IRfGap
      Get the operating frequency of the RF gap.
      Specified by:
      getFrequency in interface IRfGap
      Returns:
      frequency of RF gap (in Hertz)
    • getE0

      public double getE0()
      Description copied from interface: IRfGap
      Get the on accelerating field (V/m)
      Specified by:
      getE0 in interface IRfGap
    • setCavityCellIndex

      public void setCavityCellIndex(int indCell)
      Description copied from interface: IRfCavityCell

      Set the index n of this cell within the enclosing RF cavity. The index origin begins at 0, specifically, the first cell in the cavity will have a cell index of O. Since cell phase φ seen by the probe is

          φ = nqπ + φ0

      where q is the cavity structure constant and φ0 is the klystron driving phase, the first cell always has the phase of the klystron.

      When considered with an RF gap, it can be convenient to consider the phase rather as a spatial component of the field and combine it with the field amplitude. We simply get a signum function effect where the new field E>n at cell n is given by

          En = E0 cos(nqπ)

      where E0 is the usual gap field strength.

      See the discussion below on cavity mode constants.

      Specified by:
      setCavityCellIndex in interface IRfCavityCell
      Parameters:
      indCell - index of the cavity cell within the cavity, starting at 0
    • setCavityModeConstant

      public void setCavityModeConstant(double dblCavModeConst)
      Description copied from interface: IRfCavityCell

      Sets the structure mode number q for the cavity in which this cell belongs. Here the structure mode number is defined in terms of the fractional phase advance between cells, with respect to π. To make this explicit

          q = 0     ⇛ 0 mode
          q = 1/2 ⇒ π/2 mode
          q = 1     ⇛ π mode

      Thus, a cavity mode constant of q = 1/2 indicates a π/2 phase advance between adjacent cells and a corresponding cell amplitude function An of

          An = cos(nqπ)

      where n is the index of the cell within the coupled cavity.

      Specified by:
      setCavityModeConstant in interface IRfCavityCell
      Parameters:
      dblCavModeConst - the cavity mode structure constant for the cavity containing this cell
      See Also:
      • RF Linear Accelerators, Thomas P. Wangler (Wiley, 2008).
    • getCavityCellIndex

      public int getCavityCellIndex()
      Description copied from interface: IRfCavityCell
      Returns the index of this cell within the parent RF cavity. The index origin starts at zero.
      Specified by:
      getCavityCellIndex in interface IRfCavityCell
      Returns:
      the cell number within the parent cavity, starting at zero
      See Also:
    • getCavityModeConstant

      public double getCavityModeConstant()
      Description copied from interface: IRfCavityCell

      Returns the structure mode number q for the cavity in which this gap belongs. This is the fractional phase advance between cells, with respect to π. It can also be interpreted as describing the spatial advance of the axial electric field from cell to cell.

      Specified by:
      getCavityModeConstant in interface IRfCavityCell
      Returns:
      the cavity mode constant for the cell containing this gap
      See Also:
    • isEndCell

      public boolean isEndCell()
      Description copied from interface: IRfCavityCell
      Returns whether or not the cell is the first or last in a string of cells within an RF cavity. This is particularly important in structures operating outside 0 mode where the cell phasing may change.
      Specified by:
      isEndCell in interface IRfCavityCell
      Returns:
      true if this cell is at either end in a bank of cells, false otherwise
    • isFirstCell

      public boolean isFirstCell()
      Description copied from interface: IRfCavityCell
      Indicates whether or not this cell is the first cell of an RF cavity.
      Specified by:
      isFirstCell in interface IRfCavityCell
      Returns:
      true if this is the initial cell in an RF cavity, false otherwise
    • computeSynchronousPhaseAndEnergyGain

      public void computeSynchronousPhaseAndEnergyGain(IProbe probe)
      Description copied from interface: IRfGap
      Compute the synchronous phase and the energy gain for a cavity gap.
      Specified by:
      computeSynchronousPhaseAndEnergyGain in interface IRfGap
    • getSynchronousPhase

      public double getSynchronousPhase()
      Description copied from interface: IRfGap
      Return the synchronous phase of a cavity gap, which must be previously calculated using computeSynchronousPhase.
      Specified by:
      getSynchronousPhase in interface IRfGap
      Returns:
      synchronous phase [rad]
    • getEnergyGain

      public double getEnergyGain()
      Description copied from interface: IRfGap
      Return the energy gain of a cavity gap previously calculated.
      Specified by:
      getEnergyGain in interface IRfGap
      Returns:
    • setLongitudinalPhaseReference

      public void setLongitudinalPhaseReference(double longitudinalPhaseEntrance)
      Specified by:
      setLongitudinalPhaseReference in interface IRfCavityCell
    • getLongitudinalPhaseReference

      public double getLongitudinalPhaseReference()
      Specified by:
      getLongitudinalPhaseReference in interface IRfCavityCell